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ABSTRACT This year's evaluation brought several new challenges in pronuncia-

In this paper, we describe improvements to the pronunciation moddfon modeling. Our primary focus was to apply lessons learned from
featured in the 199&PRACH Broadcast News evaluation system. automatic pronunciation modeling work in the Switchboard domain
Various smoothing and pruning techniques and the integration 0[(_7, inter alia], increasing the d_|verS|ty of pronunciations in the dic-

confidence scores into the pronunciation model training provided 40nary. We were also faced with the issue of novel words— a vocab-
4% relative improvement over the baseline model. We also repolJtllary that spans current affairs is crucial for Broadcast News (BN)

on promising new techniques that did not appear in the evaluatiof€c0gnition. For words that did not occur previously in our dictio-
system. nary, likeLewinsky we needed to generate new baseforms quickly.

Each of these tasks required considerable new machinery in our

1. INTRODUCTION training system. In order to save effort in implementing these dis-
A recent surge of efforts in automatic pronunciation modeling Withinp"’l_ra.te functions, we reorganized our pr_onunuann software f”“o‘_md
the ASR community has yielded mixed results for large-vocabulary? [INite state grammar (FSG) decoder (Figure 1). The modularization
speech recognition systems. Simply adding raw pronunciationQf Viterbi alignments into an FSG compllat_lon stage anda decod_lng
from phone recognition to a dictionary can vastly increase decodin tage allowed for r_10ve| compilation techniques W'thOL_'t our having
time, often with very little benefit. It is therefore important not only 0 completely_ re_wnte the Idecodﬁr. Thuls, we couLd easily |m|p:‘ement
to discoverwhatalternative pronunciations are possible, but also toNEW pronunciation models (such as a letter-to-phone m.°d‘? ornew
introduce extra pronunciations oniyhenthey are needed. In the words) as long as the output of the procedure was avglld flnlt_e state
work described in this paper we sought to discover ways in whichgramm?]r' The dfecoderl can also be_ u_sed to :jes?cdnest lists, facil-
we could improve the baseline lexicon for the SPRACH Broadcasttating the use of complex pronunciation models.

News System [1]. We used the tools of statiaseform learning and One of the benefits of using a connectionist acoustic model in

d_ec_|3|on-tree (c_i-tree) mode_llng to det_e_rmlne arange of_new p.ronunéonjunction with our FSG decoder is the availability of posterior
ciation alternatives. Posterior probability-based acoustic confidenc robability-based acoustic confidence measures at both the phone

?nedaﬁg\rss rﬂi?r\]/e?efcrﬁm Lhees Sisigzrg f)ucrosner}:g:ilgzlzt‘ s;g:%“rfn?c’d Ind the word levels [8]. We found these acoustic confidence mea-
P 9 q 9 * sures useful on several occasions as a guide to model building, in-

cluding selection of pronunciations and checking automatically cre-

Dictionary| |Phonetr Lettrc]e(r)-r;[g- ated models for novel words.
he=dh ax d aw ptrees
The Dow Jones... ;O\i;d X Jor o dow Since the acoustic model was being developed at the same time
j ones=j h .. />\ as the pronunciation models, we had the option of using either an

acoustic model that was not as good as the evaluation model or a
shifting acoustic model baseline. We opted for the former; as a

consequence, many of the word error rate (WER) results reported
here are 3-4% higher than those obtained using our final evaluation
system. We combined the 199BB0OT PLP-based recurrent neu-

FSG building

Acoustics FSG ral netvyork (RNN) coqtext-independent phone cla_ssifier [3] wi_th a
X ddd aw 4000 hidden unit multi-layer perceptron (MLP) using modulation-
—MMWWW o%@ g o filtered spectrogram features [6]. Both networks were trained only
iy @ on the 1997 BN training data. For fast turnaround development test-

Alignment ing, we used a half-hour subset of the 1997 evaluation set (labeled
dh dh dh dh ax ax ddl d... Hub-4E-97-subset), which also increased error rates by roughly 2%
FSG decoder Acoustic confidences over the full 1997 evaluation set.

dh=0.24 ax=0.4 dcl=0.81...
2. GENERATION OF NEW
Figure 1. Encapsulation of decoding for different pronunciation PRONUNCIATIONS
models using finite state grammars.

The baseline lexicon was derived from the 198B0T Broadcast
IWe contrasstatic pronunciation models with those that are sensitive to News transcription system [2] and contained an average of 1.10 pro-
contextual factors such as speaking rate. nunciations per word for a 65K vocabulary. In order to increase the




Decoding Parameters [ Lexicon | Pruning Style | % WER ] Timing |
[ Lexicon | 7 Hyp. WER (%) [ 27 Hyp. WER (%)| [ Baseline n/a 299 | 1.81x RT
Baseline:ABBOT 96 29.9 27.5 Augmented no pruning 28.9 6.69x RT
Augmented:A=0.5 28.9 27.1 prune 1ow | ppron<0-1#pmax | 29.5 | 2.50x RT
probability prons|| ppron<1.0%pmax 314 1.85x RT

Table 1: Word error rate on Hub-4E-97-subset for static IeX|ca.| Count-based prunin¢| log counter —1.2 | 588 | > ox RT |

Table 2: Word error rate on Hub-4E-97-subset for various pruning

number of pronunciations available to the recognizer, our first tasknethods using narrow (7 Hypothesis) decoding parameters.
was to align theanonicaltranscription of the acoustic training data

against aralternativetranscription. The canonical transcription was

obtained from a forced Viterbi alignment of the reference word se- 3. DICTIONARY PRUNING

qguence to the training data using the baseline lexicon, whereas thleh - . . h ber of
alternative transcription was obtained by running the recognizer us- € new dictionary described above increased the number of pro-
ing only the phone-level constraint of a phone bigram. Each tranunciations per word from 1.10t0 1.67, but decoding time increased
scription covered the 100-hour 1997 training set. almost four fold, which was devastating for ourxi@eal time sys-

tem. In order to reduce the number of pronunciations and hence the

In the second stage of the pronunciation model learning proces§lécoding time, we investigated two dictionary pruning techniques.
we trained d-trees to predict the phone-recognition realization of 41 our traditional pruning scheme, baseforms were removed from
dictionary phone using the alignment between the canonical and afhe lexicon if they had a prior probability that was less than some
ternative transcriptions. D-trees estimated a probability distributior{r2Ction Ofpmax, the prior of most probable baseform for the word.
over the realization of dictionary phones using the identity, mannerhile this significantly reduced decoding time, it also halved the
place, and syllabic position of each phone and its immediate neighd@ins from the new dictionary, as shown in Table 2. Reducing the
bors as contextual features. 90% of the 1997 BN training data wal§Xicon to a single baseform per word (pruning level 1.0) also sig-
used for training the d-trees, and 10% for tree pruning. The distriNificantly hurt performance with no corresponding speedup relative
butions from the d-trees were then compiled into an FSG: for thd© the baseline.

nth phone in the canonical transcription, the appropriate tree distri-_. . o .
butiond was found. Between nodesandn -+ 1 in the FSG, an arc Since high-frequency words usually have more pronunciation vari-

was added for every recognition phonedinappended with the ap- ants in continuous speech, we developed a new pruning_ tt_achnique
propriate probability. Phone deletions were accommodated throug ase_d on the number of occurrences of the word in the training data.
n this second scheme, the maximum number of baseforms per word

the insertion of null transitions. Some smoothing was applied to this
FSG construction by disallowing any transitions with below thresh-%:
old probabilities (the threshold was arbitrarily set to 0.1).

was determined by

Following d-tree training and FSG compilation, in the third stage # baseformw;) = alog,, count(w) ,

we created a new static lexicon. The compiled FSG was realigned to
the training data to obtainsmoothedphone-constraint decoding in  wherex is a tunable parameter to shift the log scaling. Theost
the spirit of Rileyet al. [7] (although they used hand-transcriptions |ikely baseforms for each word included in the lexicon. As shown in
as a starting point, rather than phone recognition). Since the FS&e bottom section of Table 2, this method facilitated lower decoding
decoder produced both a word and phone alignment, the new altefimes (only 1.5 times that taken by the baseline) without any increase
native transcription was easily converted into a new static lexiconn WER relative to the unpruned lexicon. The results in Table 3 show
for our full first-pass decoder (®vay). However, we found that that gains provided by the log-count pruning scheme carry over to
the resulting lexicon was still too noisy, particularly for infrequently the wider beam decoding condition. A lexicon pruned using this
occurring words. We therefore merged the newly obtained pronunsecond scheme was therefore selected for use isReCcH98 sys-
ciations with those from the baselir@BOT 96 lexicon, using the  tem; we found that the modest improvements from this lexicon were
following interpolation: duplicated across test sets (including the full 1997 Hub4 Evaluation)
and with different acoustic models.

Following the evaluation, we computed the posterior probability
based average acoustic confidence scores for the baseforms in the
unpruned lexicon from a forced Viterbi alignment to the 1997 BN
training set. Baseforms were reselected using the log-count pruning

P (pronjword) = AP¢,.., (pronword)+(1—X) P, ,,,. (pronword)

The value of the empirically determined smoothing parameid
not affect results much within a broad range of values, so we set

A = (1 —X) = 0.5. Since the weighting factor can be interpreted [Lexicon [ WER (%) | Decode time]
as a measure of trust in the source of a word’s baseforms, a possible

strategy would be to make dependent upon frequency of a word’s ﬁase.llne . g;i %(7)2 X Ei

occurrence in the training data, although we have not tried this. EW: o pruning : Ao X
log count EPRACH98) 26.9 33.07 xRT

In a narrow pruning beam width decoding (Table 1:7 hypothesis de- confidence log count 26.6 30.45x RT

coding), the augmented dictionary outperformedaheoT 96 dic- _ _
tionary. When a wider beam width was used (max 27 hypothesesjable 3: Wc_er error rate on Hub_-4E-97-s_ubset for various pruning
the augmented lexicon still provided a gain, but by a smaller marginmethods using full (27 Hypothesis) decoding parameters.



scheme according to their confidence-based rankings; this providdd _ WER (%) with | WER (%) with
a small boost to performance both in terms of decoding time and Lexicon ABBOT 96 SPRACH98
recognizer accuracy. Baseline: Dictionary alone 31.9 30.5
+ MWeont 32.0 -
4. CONFIDENCE-BASED EVALUATION OF + mei gig 382
NOVEL WORD PRONUNCIATIONS * MWhnistreq : :

As indicated in the introduction, one problem we encountered waable 4: Word error rate on Hub-4E-97-subset for multi-word lexica.
determining pronunciations for novel words not already in our dic-

tionary that occurred either in the training transcriptions or in lan-

guage model training texts. Within our pronunciation software MW, Word-pairs were ranked according to the mutual infor-
framework, this involved construction FSGs directly from the or- mation between the frequency distributions of the set
thography of the word, using acoustic alignment to determine the of observed pronunciations (from the smoothed phone
best pronunciation. recognition) for the two wordsc(f. [4]).

Building models to predict the pronunciation of a word from its or- MWmi+freq Because MW was found to rank some relatively in-
thography required two steps: (1) we aligned the letters in the dic- frequently occurring word-pairs highly, a third scheme
tionary to corresponding phones using a hidden Markov model; and was devised that ranked pairs according to both their
(2) we trained letter-to-sound d-trees to estimate the probability dis- mutual information and also the frequency of occur-
tribution over phones given a central letter and the context of three rence.

letters to the left and three letters to the right.

Gi t of letter-t dt it th ible t " Smaller language models with and without multi-words were built
Iven a set of letter-to-sound trees, it was then possible to construgt, quick testing purposes, resulting in an increase in baseline error

a (bushy) pronunciation graph for a novel word, and align this graph} 5¢ -~ The results from the multi-word experiments (table 4) were
to acoustics using the FSG decoder. We view the matching of thig .o 1\sive When augmenting the baseliesoT 96 dictionary,
graph to the acoustic models as the critical gain of this teChniqu%ulti-words chosen using the Myeq Scheme provided a sm:all

using atext-to-;peech system that was L_Jninflugnce_d by our acousﬁiﬁ]provement. This gain vanished, however, when the same multi-
models would likely produce pronunciations with different proper- words were incorporated into thﬂDR‘ACHQS di;:tionary
ties than those in our baseline dictionary. '

The FSG alignment could only be performed on words for which5-2- Word and Sy”able'based decision trees

we had sample acoustics. Therefore, we recorded subjects readirlgg an enhancement of multi-word pronunciations, we developed d-

aloud from word lists presented by the computer for several thouirees that predicted the pronunciation of words based on the iden-

AN , ; Yities of surrounding words. This can be considered an extension
The Viterbi alignment of the graph to the acoustics provided both % the above multi-word experiment, since the d-tree building tech-

putative baseform and also an acoustic confidence score. Using thrlﬁques used mutual information as the criterion for determining

procedure, pronunciations for 7,000 novel words were incorporate%ranching splits. An added advantage of d-tree modeling is that
into the 1998SPRACHSystem. While the procedure was far from other features besides word identity can be used as d-tree features,

pherfect, EpOt check|§ %flth(; higr;]-c?nfiden(;% novel basefi)/\r/mshsho;/v ch as speaking rate and trigram probability, that correlate well with
them to be more reliable than the low-confidence ones. We thereforg . o oo changes [5].

focused hand correction efforts on lower confidence pronunciations.
We built models for the 550 most frequent words using surround-

5. MULTI-WORD AND DYNAMIC ing word identities, and the identities, manner, place, and syllabic
DICTIONARIES position of neighboring phones as features in the d-tree. We also in-

cluded information about word length, several estimates of speaking

Since the pronunciation of a word is dependent upon contextual faGte and the trigram probability of the word. Slightly less than half
tors such as the words that f_oIIow_and precede it, word predictabilityyf the trees in each case used a distribution other than the peior (
and speaking rate, we also investigated ways to add more contextugkre grown to more than one leaf).

influence into the pronunciation model.
) o In building the word trees, we found linguistically plausible pronun-
5.1. Multi-word pronunciations ciation changes. For example, in the tree fioesident(shown in

Ourinitial . . h . ¢ multi figure 2), when the following word waSlinton, Clinton’s,or Boris,
ur initial attempt at incorporating context was the creation of mu t"the final/ closure was very likely to be deleted. In addition, the

word baseforms. We elected to create baseforms for the approXje|arization ofin/ to [ng] was possible, a likely consequence of
mgtgly 4,000 Word_-palrs that occurred suff|CIent_I_y frequently in thegne following/k/ in Clinton(’s). It is important to note that the ve-
training data to facilitate reliable baseform learning.(those pairs |- -4i0n requires the deletion ¢f  to be possible; it is easier to

Wlth 2.0 or more exz_amples). Of these 4k pairs, 500 were selected f%arn these co-occurrences when units larger than individual phones
inclusion in the lexicon and as single items in thg@ram language .0 modeled

model. Three different ranking schemes were investigated:

In order to increase coverage, we also trained roughly 800 d-
MWeons  Word-pairs were ranked according to their average in-trees based on syllable distributions. Each word was given a sin-
verse posterior confidence in a forced Viterbi alignment gle canonical syllable transcription, so that words with similar
of the training data. syllabic-internal pronunciation alternations in h@soT 96 dictio-



Is next word one of:

{Clinton, Clinton’s,
Boris}

Is previous word one of:
0.69pcl prehzihdxaxn
{for, the} 0.18pcl prehzdxaxn

0.10pcl prehzihdx ax ng

047 pcl prehzihdxaxn

0.89pcl prehzihdxax ntel N
0.33pcl prehzihdx ax ntcl

0.06 pcl prehzihdxaxn
0.05pcl prehzdxaxn

0.14pclprehzaxn

Figure 2: Decision tree for the word “president.”

larly when building our 1& real-time system, we found that it is not
enough to determinehat new pronunciations we can install into a
new dictionary. One must also considenenthese pronunciations
should be used, either in terms of lexical pruning or determining
which pronunciations are appropriate within context.

Using decision-tree smoothing of phone recognition to determine
what new pronunciations were viable, and a new logarithmic prun-
ing method to decide when to employ these new models, we were
able to improve recognition on Broadcast News by about 1% abso-
lute. Confidence measures played a part in identifying which pro-
nunciations matched the recognizer acoustic model, guiding model
selection and verification of baseforms for novel words. Finally,
contextual methods of determining pronunciations yielded a small
improvement in our initial experiments; we feel that more study is
needed in this promising area.
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the lexical stress of the syllable, position within the word, and the
word’s identity.

Since the pronunciation scoring required knowledge of the following 1.

word in the hypothesis, we were not able to implement these models
in our first-passowAy) decoder. Therefore, we used the dynamic
pronunciation model with two decoding strategies: (1) we rescored
n-best lists (withn = 100) constructed by theoway decoder us-

ing our best static models; and (2) we implemented a lattice decoder.

that re-evaluated word probabilities in the context of a hypothesis.
Table 5 summarizes our preliminary results.

In order to test the influence of the decoding process on the results3.

we recomputed the baseline with thebest decoder and the lattice
decoder using thePRACH98 static dictionary. The results in both
cases were similar to those of the first-pass decoding (26.9%). The

dynamic trees gave us a small (non-significant) increase in accuracy.

over our improved static lexicon, with syllable trees performing the
best. The difference between lattice decoding aflzkst rescoring

seems to be minimal in this test. We intend to study further the fea-5_

tures and models that were most effective in this framework, and the
conditions under which they were effective. For example, the 0.4%
difference betweemn-best decoding with thePRACH98 dictionary

and the syllable trees was accounted for almost completely by a

1.4% improvement in WER in the spontaneous broadcast speech fog,

cus condition.

6. CONCLUSIONS
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